Note on Mean Convergence of Lagrange Parabolas

P. Vértesi

> Mathematical Institute of the Hungarian Academy of Sciences, 1053 Budapest, Reáltanoda u. 13-15, Hungary

Communicated by Richard S. Varga
Received July 6, 1978

1. Introduction and Preliminary Resulits

1.1. Let $w(x)$ be a weight function on $[-1,1]$ and let $p_{n}(w ; x)$ be the sequence of the corresponding orthogonal polynomials with the zeros

$$
-1<x_{n n}(w)<x_{n-1, n}(w)<\cdots<x_{1 n}(w)<1 \quad(n==1,2, \ldots) .
$$

For $f \in C$ (f is continuous on $[-1,1]$) we consider the uniquely determined Lagrange interpolatory polynomials $L_{n}(f ; w ; x)==\sum_{k=1}^{n} f\left(x_{k i n}(w)\right) I_{k n}\left(u^{\prime} ; x\right)$ of degree $\leqslant n-1$ satisfying $L_{n}\left(f ; w ; x_{k n}\right)=f\left(x_{k n}\right)(k=1,2, \ldots, n ; n=1,2, \ldots)$. As was proved by G. Faber, $L_{n}(f ; w ; x)$ does not necessarily converge uniformly to $f(x)$. But as far as mean convergence is concerned, the situation is more favorable.

A general theorem due to Erdös and Turán [1] states that

$$
\begin{equation*}
\lim _{n \rightarrow x} \int_{-1}^{1}\left[L_{n}(f ; w ; x)-f(x)\right]^{2} w(x) d x=0 \quad \text { if } f \in C . \tag{1.1}
\end{equation*}
$$

As to Jacobi weights, A. Holló and later Turán [2] proved that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{-1}^{1}\left[L_{n}(f ; x, \beta ; x)-f(x)\right]^{2} d x=0 \quad \text { if } f \in C \tag{1.2}
\end{equation*}
$$

provided $-1<\alpha, \beta<\frac{1}{2}$; moreover

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{-1}^{1}\left|L_{n}(f ; \alpha, \beta ; x)-f(x)\right| d x-0 \quad \text { if } f \in C . \tag{1.3}
\end{equation*}
$$

provided $-1<\alpha, \beta<\frac{3}{2}$.
(Here and later, $L_{n}(f ; x, \beta ; x)$ stands for $L_{n}(f ; w ; x)$ where $w(x)==$ $w^{(x, \beta)}(x)=(1-x)^{\alpha}(1: x)^{\beta}(\alpha, \beta>-1)$ is a Jacobi weight.)
1.2. A far-reaching generalization of (1.2) and (1.3) was proved by Askey [3, 4] and later by Névai [5]. The following is essentially a result from [5]:

If
(i) $-1<\alpha, \beta \leqslant-\frac{1}{2} ; a=b=0$ and $p>0$ or
(ii) $-\frac{1}{2}<\alpha, \beta ; a>(2 \alpha-3) / 4, b>(2 \beta-3) / 4$ and

$$
0<p<\min \left(\frac{4(a+1)}{2 \alpha+1}, \frac{4(b+1)}{2 \beta+1}\right) \quad \text { or }
$$

(iii) $-1<\alpha \leqslant-\frac{1}{2}<\beta$; $a=0, b>(2 \beta-3) / 4$, and

$$
0<p<\frac{4(b+1)}{2 \beta+1} \quad \text { or }
$$

(iv) $-1<\beta \leqslant-\frac{1}{2}<\alpha ; b=0, a>(2 \alpha-3) / 4$ and

$$
0<p<\frac{4(a+1)}{2 \alpha+1}
$$

then

$$
\lim _{n \rightarrow \infty} \int_{-1}^{1}\left|L_{n}(f ; \alpha, \beta ; x)-f(x)\right|^{p}(1-x)^{a}(1+x)^{b} d x \quad 0 \quad \text { for any } \quad f \in C
$$

Conversely, if $\alpha>-\frac{1}{2}$ and (1.4) holds, then necessarily $p \leqslant 4(a+1) /(2 \alpha+1)$. Similarly, if $\beta>-\frac{1}{2}$ and (1.4) is true, we have $p \leqslant 4(b+1) /(2 \beta+1)$.
1.3. Of course, (1.2) (or (1.3)) can be obtained from (1.4) if we choose $a=b=0, p=2$ (or $a=b=0, p=1$).

2. A New Result

2.1. A natural problem which was raised in [2] and [5] is to study the limiting cases, i.e., when $a=b=0, p=2$, and $\max (\alpha, \beta)=\frac{1}{2}$ (see (1.2)); when $a=b=0, p=1$, and $\max (\alpha, \beta)=\frac{3}{2}$; when (ii) is modified to read $p=\min \{4(a+1) /(2 \alpha+1), 4(b+1) /(2 \beta+1)\} ;$ or when, in (iii), $p=$ $4(b+1) /(2 \beta+1)($ or $p=4(a+1) /(2 \alpha+1)$ in (iv)). The only settled case is $a=b=0, p=2, \alpha=\beta=\frac{1}{2}$ (see Feldheim [6]), in which case (1.2) does not hold for all $f \in C$.
2.2. Let $C(\omega)=\{f ; f \in C$ and $\omega(f ; t) \leqslant a(f) \omega(t)\}$ where $\omega(f ; t)$ is the modulus of continuity of $f(x)$ and $\omega(t)$ is a modulus of continuity with $\lim _{t=0} t / \omega(t)=0$.

Theorem 2.1. Let $a, b, \alpha, \beta>-1, p \geqslant 1$, and $0 \leqslant \epsilon<2$ be fixed numbers. If

$$
\begin{equation*}
-\frac{1}{2}<\alpha \quad \text { and } \quad p=\frac{4(a+1)}{2 \alpha+1}+q \quad(q \geqslant 0) \tag{2.1}
\end{equation*}
$$

then for certain $f \in C(\omega)$ and $n=n_{1}, n_{2}, \ldots$,

$$
\begin{align*}
\int_{-1+\epsilon}^{1} & \left|L_{n}(f ; \alpha, \beta ; x)-f(x)\right|^{p}(1-x)^{\alpha}(1+x)^{b} d x \\
& >\left[\omega\left(\frac{1}{n^{2}}\right)\right]^{p} \log n \quad \text { if } q=0, \tag{2.2}\\
& >\left[\omega\left(\frac{1}{n^{2}}\right)\right]^{p} n^{q(\alpha+1 / 2)} \quad \text { if } q>0 .
\end{align*}
$$

Similarly, if

$$
\begin{equation*}
-\frac{1}{2}<\beta \quad \text { and } \quad p=\frac{4(b+1)}{2 \beta+1}+q \quad(q \geqslant 0) \tag{2.3}
\end{equation*}
$$

then for certain $f \in C(\omega)$ and $n=n_{1}, n_{2}, \ldots$,

$$
\begin{align*}
\int_{-1}^{1-\epsilon} & L_{n}(f ; \alpha, \beta ; x)-\left.f(x)\right|^{p}(1-x)^{a}(1+x)^{b} d x \\
& >\left[\omega\left(\frac{1}{n^{2}}\right)\right]^{p} \log n \quad \text { if } q=0, \tag{2.4}\\
> & \left.>\omega\left(\frac{1}{n^{2}}\right)\right]^{p} n^{q(\beta+1 / 2)} \quad \text { if } q>0 .
\end{align*}
$$

2.3. Theorem 2.1 implies that, in the above limiting cases, the relations corresponding to (1.2)-(1.4) do not hold for all $f \in C$.

3. Proof

3.1. Let us define $f_{n}(x) \in C$ as follows:

$$
\begin{gather*}
f_{n}\left(x_{k n n}^{(\alpha, \beta)}\right)=(-1)^{k} \quad(k=0,1,2, \ldots, n+1) \\
f_{n}(x) \text { is linear in }\left[x_{k n}^{(\alpha, \beta)}, x_{k-1 . n}^{(\alpha, \beta)}\right] \quad(k=1,2, \ldots, n+1) . \tag{3.1}
\end{gather*}
$$

Here, sometimes omitting superfluous indices, $x_{0} \equiv 1, \quad x_{n+1} \equiv-1$; $x_{k n}=\cos \theta_{k n}(k=1,2, \ldots, n)$ stand for the zeros of the Jacobi polynomial
$P_{n}(x) \equiv P_{n}^{(\alpha, \beta)}(x)$ of degree n with the normalization $P_{n}^{(\alpha, \beta)}(1)=\binom{n+\alpha}{\alpha}$. Assuming

$$
\begin{equation*}
-\frac{1}{2}<\alpha \quad \text { and } \quad p=\frac{4(a+1)}{2 \alpha+1}+q \quad(q \geqslant 0), \tag{3.2}
\end{equation*}
$$

our fundamental lemma is
Lemma 3.1.

$$
\begin{align*}
\int_{-1+\epsilon}^{1}\left|L_{n}\left(f_{n} ; x\right)\right|^{p}(1-x)^{a}(1+x)^{b} d x & >c_{1} \log n & & \text { if } q=0, \tag{3.3}\\
& >c_{2} n^{q(\alpha+1 / 2)} & & \text { if } q>0 .
\end{align*}
$$

3.1.1. To prove (3.3) let us denote by x_{j} a zero of P_{n} nearest to x $(1 \leqslant j=j(n, x) \leqslant n)$. Setting

$$
\begin{gathered}
\lambda_{n}(x)=\sum_{k=1}^{n}\left|l_{k n}(x)\right|, \\
s_{n}=\left[n(\log n)^{-2 /(\alpha+1 / 2)}\right], \quad \text { and } \quad x=\cos \theta,
\end{gathered}
$$

we have

$$
\begin{equation*}
\left|L_{n}\left(f_{n} ; x\right)\right| \sim \lambda_{n}(x) \sim \theta_{j}^{-\alpha-1 / 2} \sim \theta^{-\alpha-1 / 2} \quad \text { if } \quad \theta \in T_{j} \text { and } 3 \leqslant j \leqslant s_{n} \tag{3.4}
\end{equation*}
$$

where

$$
T_{j}=\left[\frac{\theta_{j+1}+\theta_{j}}{2}, \frac{\theta_{j+1}+3 \theta_{j}}{4}\right] .
$$

(As to the symbol " \sim " which does not depend on x, see $[7,1.1]$.)
Indeed, by (3.1),

$$
\begin{align*}
\left|L_{n}\left(f_{n} ; x\right)\right| & =\left|\sum_{k=1}^{n}(-1)^{k} l_{k}(x)\right| \\
& =\left|\sum_{k=1}^{j-1}+\sum_{k=j+1}^{n}+\sum_{k=j}\right| \stackrel{\text { dep }}{=}\left|J_{1}+J_{2}+J_{3}\right| . \tag{3.5}
\end{align*}
$$

By [8, Lemmas 3-5], we can write

$$
\begin{equation*}
\left|J_{1}\right| \sim\left|P_{n}(x)\right| n^{-\alpha} I_{1} \quad \text { and } \quad\left|J_{2}\right| \sim\left|P_{n}(x)\right| n^{-\alpha} I_{2} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{1} \sim j^{\alpha+1 / 2} \log j \quad \text { and } \quad I_{2} \sim j^{\alpha+1 / 2} \log j+n^{\alpha+1 / 2} . \tag{3.7}
\end{equation*}
$$

(We used the fact that the summands of $J_{s}, s=1,2$, have the same sign.) As $j \leqslant s_{n}$, we can write $I_{2} \sim n^{\alpha+1 / 2}$ and $I_{1}=o\left(I_{2}\right)$. By [9, Lemma 3.2],

$$
\begin{equation*}
\left|P_{n}(x)\right| \sim\left|\theta-\theta_{j}\right| \theta_{j}^{-\alpha-1 / 2} n^{1 / 2} \sim\left|x-x_{j}\right| \theta_{j}^{-\alpha-3 / 2} n^{1 / 2} \tag{3.8}
\end{equation*}
$$

hence, $\left|J_{3}\right| \sim 1$, using [7, (8.9.2)] which states that

$$
\begin{equation*}
\left|P_{n}^{\prime}\left(x_{k}\right)\right| \sim k^{-\alpha-3 / 2} n^{\alpha+2} \quad(k=1,2, \ldots, n) \tag{3.9}
\end{equation*}
$$

From (3.5)-(3.8) we get $\left|L_{n}\left(f_{n} ; x\right)\right| \sim \theta_{j}^{-x-1 / 2}$ by applying the relation

$$
\begin{equation*}
\theta_{k+1}-\theta_{k} \sim \frac{1}{n} \quad(k=0,1,2, \ldots, n) \tag{3.10}
\end{equation*}
$$

(Here $\theta_{0}=0, \theta_{n+1}=\pi$; see, e.g., [9, Lemma 3.1].) Using [8, Lemma 5], we obtain (3.4), observing that, for $\theta \in T_{j}$, one has $\theta \sim \theta_{j}$.
3.1.2. Using the substitutions $x=\cos \theta,-1+\epsilon=\cos \delta$ and (3.4) we can write:

$$
\begin{aligned}
& \int_{-1+\epsilon}^{1}\left|L_{n}\left(f_{n} ; x\right)\right|^{p}(1-x)^{a}(1+x)^{b} d x \\
& \quad \geqslant c \int_{-1+\epsilon}^{1}\left|L_{n}\left(f_{n} ; x\right)\right|^{p}(1-x)^{a} d x \\
& \quad=c \int_{0}^{\delta}\left|L_{n}\left(f_{n} ; \cos \theta\right)\right|^{p}\left(\sin \frac{\theta}{2}\right)^{2 a} \sin \theta d \theta \\
& \geqslant c \sum_{j=3}^{s_{n}} \int_{T_{j}}\left|L_{n}\left(f_{n} ; \cos \theta\right)\right|^{p}\left(\sin \frac{\theta}{2}\right)^{2 a} \sin \theta d \theta \\
& \\
& \sim \sum_{j=3}^{s_{n}} \int_{T_{j}} \frac{\theta^{2 a+1}}{\theta^{(\alpha+1 / 2)[4(a+1) /(2 \alpha+1)+q]}} d \theta=\sum_{j=3}^{s_{n}} \int_{T_{j}} \frac{d \theta}{\theta^{1+q(\alpha+1 / 2)}} \\
& \sim n^{q(\alpha+1 / 2)} \sum_{j=3}^{s_{n}} \frac{1}{j^{1+q(\alpha+1 / 2)}} \sim \log n \quad \text { if } \quad q=0, \\
& \sim n^{q(\alpha+1 / 2)} \quad \text { if } \quad q>0,
\end{aligned}
$$

which is (3.3).
3.2. Now we can apply the method of [10].

Indeed, choosing in $[10,2.4] m=e_{n}=1, g_{n}=f_{n}, \quad T_{n}\left(g_{n} ; z_{n}\right)=$ $\left(\int_{-1+\epsilon}^{1}\left|L_{n}\left(f_{n} ; x\right)\right|^{p}(1-x)^{a}(1+x)^{b}\right)^{1 / p}, \quad \lambda_{n}\left(z_{n}\right)=(\log n)^{1 / p} \quad\left(\right.$ or $\quad \lambda_{n}\left(z_{n}\right)==$ $n^{q(\alpha+1 / 2) / p}$, if $\left.q>0\right), \delta_{n}=n^{-2}, U_{n}\left(g_{n} ; z_{n}\right)=\left(\int_{-1+\epsilon}^{1}\left|g_{n}(x)\right|^{p}(1-x)^{a}(1+x)^{b}\right)^{1 / p} n$
and $T_{n}(h ; x)-U_{n}(h ; x)=\left(\int_{-1+\epsilon}^{1}\left|L_{n}(h ; x)-h(x)\right|^{p}(1-x)^{a}(1+x)^{b} d x\right)^{1 / p}$, we obtain, as in [10], that for certain $f \in C(\omega)$ and $\left\{n_{i}\right\}$,

$$
\begin{equation*}
\left(\int_{-1+\epsilon}^{1}\left|L_{n}(f ; x)-f(x)\right|^{p}(1-x)^{a}(1+x)^{b} d x\right)^{1 / p}>\omega\left(\frac{1}{n^{2}}\right)(\log n)^{1 / p} \tag{3.11}
\end{equation*}
$$

if $q=0$ and $n=n_{1}, n_{2}, \ldots$, from which (2.2) follows. The remaining cases can be treated similarly.

References

1. P. Erdös and P. Turán, On interpolation, I, Ann. of Math. 38 (1937), 142-155.
2. P. Turán, On some problems in the theory of the mechanical quadrature, Mathematica (Chij) 8 (1966), 182-192.
3. R. Askey, Mean convergence of orthogonal series and Lagrange interpolation, Acta Math. Acad. Sci. Hungar. 23 (1972), 71-85.
4. R. Askey, Summability of Jacobi series, Trans. Amer. Math. Soc. 179 (1973), 71-84.
5. G. P. Néval, Mean convergence of Lagrange interpolation, I, J. Approximation Theory 18 (1976), 363-377.
6. E. Feldheim, Quelques recherches sur l'interpolation de Lagrange et d'Hermite par la méthode du développement des fonctions fondamentales, Math. Z. 44 (1938), 55-84.
7. G. Szegö, "Orthogonal Polynomials," Vol. XXIII, Amer. Math. Soc. Coll. Publ., New York, 1959.
8. G. I. Natanson, Two-sided estimate for the Lebesgue function of the Lagrange interpolation with Jacobi nodes, Izv. Vysš. Učebn. Zaved. Matematika 11 (1967), 67-74 [Russian].
9. P. Vértest, On Lagrange interpolation, Period. Math. Hungar., in press.
10. P. Vértesi, On certain linear operators, VII, Acta Math. Acad. Sci. Hungar. 25 (1974), 67-80.
